EXAMPLE OF FLOW OF AN AXISYMMETRIC LIQUID STREAM OVER A SELF-PROPELLED BODY

V. L. Sennitskii UDC 532.516

The plane problem of steady flow of a stream of viscous incompressible liquid over a self-
propelled, cylindrical body — a circular cylinder whose moving boundary is a motor — was con-
sidered in [1]. In this article we study the axisymmetric problem of steady flow of a stream
of viscous, incompressible liquid over a self-propelled sphere. The normal component of the
flow velocity vector is distributed over the surface of the sphere so that the mass flux and
the total momentum flux of the liquid through this surface equal zero. At low Reynolds num-—
bers, in particular, an asymptotic formula is obtained, according to which the disturbance of
flow velocity in the wake behind the body under consideration apvroaches zero with greater
distance by an X~? law, i.e., considerably faster than in the steady axisymmetric wake behind
a body imparting a nonzero momentum to the liquid per unit time. 1In the latter case, as is
well known [2], the disturbance of flow velocity approaches zero by an X~' law.

Let X, Y, and Z be rectangular coordinates; g is the radius of the sphere; x =X/a, y=Y/a, z =
Z/a; i, j, k are unit vectors, the directions of which coincide with the directions of the
X, v, and z axes, respectively; r = (x* + y? +2%)'/2;6 is the angle between the vectors i
and xi + yj + zk; A is the angle between the vectors j and yj + zk; V is the flow velocity of
the liquid; Vo = Voi is the flow velocity at infinity (Ve > 0); u = V/Vy; uy, 1, and u) are
the r-, 6-, and A-components, respectively, of the vector u; P is the pressure; Pes is the
pressure at infinity; o is the density of the liquid; p = (P — Px)/(cV3); v is the kinematic
viscosity coefficient; Re = aVs/v is the Reynolds number; ¢ is a certain dimensionless quan-
tity independent of the coordinates; f is a function of 6 defined in the interval [0, 7];
vV = (3/0x, 3/dy, 3/3z), A = 3%/9x* + 3%/oy® + 3%/0z*.

In the notation adopted here, the Navier—Stokes and continuity equations and the condi-
tions which the dimensionless flow velocity and pressure must satisfy have the following form:

(wy)u=—yp+ —é—;Au: (1)
v-u=0;, (2)

U =¢tf, up =0, u, =0 at r = 1; (3)
u—>i, p—>0 ' as r— o0o. (4)

The liquid flow is assumed to be symmetric relative to the x axis. This means that u,, ug,
and p do not depend on A and that uy = O [in view of which the last of the conditions (3) is
satisfied]. Because of this flow symmetry, the y— and z—components of the vector S of total
momentum flux of the liquid through the surface of the sphere equal zero. Thus, § = Si.

With allowance for the steadiness of this flow, it is easy to show that

a
S /(0a?V%) = 2ar? S [ cos 8 — ug sin 8) u, + (p — 2Re™0u,/0r) cos & + (5)
o

+ Re™ (r"0u,/08 + Gue/dr — rug) sin 6] sin 649.

In accordance with (1)-(5), S/(0a®V2) is a function of ¢ and Re for the assigned depen—
dence of f on 8. In this article it is assumed that the distribution of uy over the sphere
r = 1 is such that

§=0, (6)
and that ¢ is defined as a function of Re by Eq. (6) (for the assigned dependence of £ on 6).

Moreover, it is assumed that the mass flux of liquid through the surface of the sphere equals
zero. In accordance with this, the function f(6) satisfies the condition
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5( £(0) sin 620 — 0. 7

The problem (1)-(4) is analyzed below for low Reynolds numbers.

We assume that as Re - 0

)

u(r, 6, Re) ~ “0(r9 8)+ 2_1“m (?‘, 6) gm (Re>; . (8)
p(r, 8, Re)~ p,y(r, 6)Re™ + Zl P (1, 8) Re g, (Re), (9)

where g, (Re) are functions satisfying the conditions

. . g
lim g, =0, lim -2 =0,
Re-0 Re~0 ©m
We note that the A-components of the vectors ug (n = 0, 1, ...) equal zero. Asymptotic ex-

pansions obtained as Re + 0 and for constant r and® will be called internal. We expand the
function ¢(Re) in the following asymptotic series as Re - 0:

e (Re)~ g, + Zzlgmgm (Re). (10)

Using (1)-(4) and (8)-(10), we define the zeroth-approximation problem:

VPo = Aug; (11)

vy =05 (12)

Ugr = Eof 5 Ugp = 0 at r=1; (13)
Loy —> €08 8, ugg — —sin 0, po'—>0 as r—» oo, (14)

where uoy and uop are the r- and 6-components, respectively, of the vector u,.

We assume that
f= ZO fuPm (cos 6), (15)

where fp are constants, f; # 0; Pn are Legendre polynomials. 1In accordance with the condi-
tion (7), we will have

fo=0. (16)
In Eq. (5) for S/(ca®Vi) we replace u,, ug, and p by their internal expansions. Using the
expression obtained as a result, we find
S/(0a?V:) ~ s_Re™  + 5, + s Re" g, (Re) + ... as Re—0. an
Here, in particular,

3T

5= 2002 { [(py — 200:/07) €05 0 + (r0uen/30 + Ouge/dr — r~Yuyg) sin 0] sin 048,

0

In view of the fact that S = 0, all terms of the expansion (17) must also equal zero. Using
(11)-(16) and the condition that the leading term of the expansion (17) equals zero, and hav-
ing made simple calculations, we obtain

ey = 3/f1; (18X

Do = . S frur " P, (cos B); (19)
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1 % A

Hor = r*sin @ o5t e = rsinQ or® (20)
cosd oo cosd
where P, =—(r%+2r7") f P @ ds— 5= X fm[mrt ™ + @ —m)r "] f Py, (8) de.
—1 1 m=2 1

The region of applicability of the solution. (19), (20} is determined by the condition
of smallness of convective terms compared with viscosity terms in the equations of motion of
the liquid. Estimating their values using(20), we can show that this condition is not satis-
fied for Re r = 1. Along with the internal expansions (8) and (9), therefore, we also con-
sider certain external expansions of u and p below. The terms of these expsnsions match, in
a definite way (in accordance with the principle of asymptotic joining [3]), with the terms
of the expansions (8) and (9). We note that the conditions (14) coincide with the conditions
for matching the leading terms of the internal expansions of uy, up, and p with the terms of
order unity in their external expansions.

We rewrite Eqs., (1) and (2) and the conditions (3) and (4) for uy, ug, and p as follows:

(u-v)u = —yp + Ru; (21)

_ V-u=0; (22)

U, = gfy ug =0 for p = Re; (23)

u, > c0s 0, ug—> —sin 0, p -0 as 0 — oo, (24)

Here V = (3/3%, 3/3%, 9/38); A = 0%/0%> + 3%/392 + 32/38%; & = Re x, § = Re v, 2 = Re z;
p = Re r. We assume that as Re + 0,

u(p/Re, 6, Re)~ i+ 3} u™ (p, 6) hm (Re); (25)
m=1 - .
P (p/Be, & Re)= 35 p™ (p, 6) hum (Re), (26)
m=
where hp(Re) are functions satisfying the conditioms
h
lim Ay = 0, lim —2L — (,
Re—0 Re»0o “m

We note that the A-components of the vectors u(m) equal zero. Asymptotic expansions obtained
for Re »+ 0 and constant p and 8 will be called external. Using (21), (22), and (24)-(26), we
obtain

gu'® o)

1L — T + Bu® ~an
v-u® = 0; (28)
w0, P >0, PP~0 & poo, (29)

where u(l) and ue(l) are the r- and 6-components, respectively, of the vector u<1). We note
that the boundary conditions (23) cannot be used to obtain the conditions which the r- and 6-
components of the vectors u(m) (m =1, 2, ...) must satisfy, since the external expansions are
carried out with constant p and 6 and Re -+ 0, while p = Re in (23), and therefore p cannot re-
main constant as Re - 0.

Equations (27) and (28) have solutions of the type [4]

(1) 3@ 0y N
! = 55 + 55 —wcosb; (30)
-1 9 “1 0%, . il
u = o7 g5 + 07 55 + usinG; D
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Ve p” ———sule TﬁrcOSBJ (32)

where ®(p, 6), x(p, 8) are functions satisfying the equations
Ag = 0; (33)
dyloz = Ay, (34)

Solving Eqs. (33) and (34) and using (29)-(32), we obtain
¢ = 2 amp_m—lpm (cos 0); ’ (35)
m=0
-1 pcose o

X=p Z2e 2 AnK ! (p/2) P (cos B), (36)

where ap and Ap are constants; Kpyiy, are MacDonald functions.

Let the coefficient f, in the expansion (15) differ from zero. Then the external ex-
pansions of us — i and Re™'p, start with terms of order Re®’. 1In accordance with this, we set

h;(Re) =: Re®. We replace r by p/Re in Eq. (5) for S$/(ca®VZ). Using the resulting expres—
sion and (25) and (26), we find
8/(6a?V%) ~s, 45, Re? +s; Re 2k, (Re) + ... "as Re—0. (37)

Here, in particular,

5, = 2mp® 5 [ u™ (3 + cos 20) — = P sin 20 + (p® — 20uV /6p) cos 6 +

+ (p7'0u®/00 + ouP /00 — p~u) sin e] sin 6d0.

Since S = 0, all terms of the expansion (37) must also equal zero.
To find uél), u(é>, and p(*) we must determine the constants apand Ay (m =0, 1, ...)
in Eqs. (35) and (36) for @ and x. These constants must satisfy the condition that the lead-
ing term of the expansion (37) equal zero and the matching conditions
Epeliur = LLE, sur, Ep ol = 1LE, qug,
ERe-IRe"‘lp = IRe’lERei’pv’i

where Igpq-1, I:, and ERe2 are operators of the internal and external expansions, defined as
given in [1l]. The enumerated conditions are satisfied for

ay = 0, a; = 3f,/f,
Ay = 3f,/2a1/%), A, = —3f/(2n'/*y), (38)
ap =0, Ay, =0 (k=2,3,...).

Thus, in accordance with (30)-(32), (35), (36), and (38), u( ), r(é), and p(l) have the form

1
o 3_f2 e;p(cnse—l) (

Uy = 8flp cos 8,

! 6.fr;
c0s 20 — 1 + 207" (cos 20+ 4cos 0 — 1)+ 16p > cos 0] — ; >

1P

3f, 3f
3f p(cose 1) ~1 —2 (1) 2
1 __ e + 2 1 —cos0) + 4 ]mne—-———mne = 3cos 29 + 1),
Uy 4fp (1 Y )( Co ) Y flp D 2f1p3( )

Applying the method of additive composition [3], we find approximate composite expres-—
gions for u,, ug, and p applicable in the entire region of flow:

3f,
up & (I + Eqga — L1 E )ty = g + Bt — Zf_2’2 (3cos 20 + 1),

Re?
ug A (11 +Eg.— 1 ERe2)u9 = ugs + Re2ufP,
PR (Igg1+ Egpp— Ip1Eg,)p=Re™ 'p,-

529



Let us consider the question of the asymptotic behavior of the flow velocity at large
distances from the sphere (at low Re). In the composite expressions for u, and ug we con-
vert to the coordinates p and 8. For any positive number § not exceeding 7 as p » », § <
6 <X 7 and constant Re we will have

Up ~ cos 0 + O(p7%), ug » —sin 6 + 0(9—3)'

The disturbance in flow velocity approaches zero considerably more slowly as the distance in-
creases in the wake behlnd the body on paraboloids (y + 2%2)/% = const (X > 0). We convert
to the coordinates X and (y + z%)/x in the composite expr6351ons for uy, and ug. We expand
the resulting expressions as X » 4+ and for constant (3% + 2%)/X and Re to within terms small

compared with x ?. Then converting to dimensional quantities and the vector form of notation,
we find
3]‘112 y2_{_22 v ¥2472
] 2 Pl e @ avX
VRl (1 ) :

Thus, at low Reynolds numbers the disturbance in flow velocity in the wake behind the body
under consideration tends toward zero by an X™? law as the distance increases [the distance
from the body coincides with X to within a quantity small compared with X as X/a > +~ for con-
stant (Y? + Z?)/(aX))]. This result, in particular, is in agreement with a comment made in

[5] about the law of variation with distance of the disturbance in the velocity of axisymmet-—
ric flow in the wake behind a self-propelled body.
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