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The plane problem of steady flow of a stream of viscous incompressible liquid over a self- 
propelled, cylindrical body -- a circular cylinder whose moving boundary is a motor -- was con- 
sidered in [I]. In this article we study the axisymmetric problem of steady flow of a stream 
of viscous, incompressible liquid ower a self-propelled sphere. The normal component of the 
flow velocity vector is distributed over the surface of the sphere so that the mass flux and 
the total momentum flux of the liquid through this surface equal zero. At low Reynolds num- 
bers, in particular, an asymptotic formula is obtained, according to which the disturbance of 
flow velocity in the wake behind the body under consideration approaches zero with greater 
distance by an X -2 law, i.e., considerably faster than in the steady axisymmetric wake behind 
a body imparting a nonzero momentum to the liquid per unit time. In the latter case, as is 
well known [2], the disturbance of flow velocity approaches zero by an X -I law. 

Let X, Y, and Z be rectangular coordinates; a is the radius of the sphere; x =X/a, y =Y/a, z = 
Z/a; i, j, k are unit vectors, the directions of which coincide with the directions of the 
x, y, and z axes, respectively; r = (x 2 + y2 +z2)i/2; 8 is the angle between the vectors i 
and xi + yj + zk; I is the angle between the vectors j and yj + zk; V is the flow velocity of 
the liquid; V~ = V~i is the flow velocity at infinity (V~ > 0); u = V/V~; Ur, re, and u I are 
the r-, 8-, and l-components, respectively, of the vector u; P is the pressure; P~ is the 
pressure at infinity; ~ is the density of the liquid; p = (P -- P~)/(oV~); ~ is the kinematic 
viscosity coefficient; Re = aV=/~ is the Reynolds number; e is a certain dimensionless quan- 
tity independent of the coordinates; f is a function of 8 defined in the interval [0, 7]; 
V = (3/~x, 313y, 3/3z), A = 32/3x 2 + 3=/8y 2 + ~=/3z =. 

In the notation adopted here, the Navier--Stokes and continuity equations and the condi- 
tions which the dimensionless flow velocity and pressuremust satisfy have the following form: 

i 
( u . v )  u = - -  VP + ~-~ Au; (1 )  

V ' U  = 0 ;  (2 )  

�9 U r = ~ U 0 = 0~ U~ = 0 a t  r = t ;  ( 3 )  

u - +  i ,  p - +  0 as r-+ oo. (4) 

The l i q u i d  f l o w  i s  a s s u m e d  t o  be  s y m m e t r i c  r e l a t i v e  t o  t h e  x a x i s .  T h i s  me a ns  t h a t  Ur ,  u 0 ,  
and  p do n o t  d e p e n d  on X and  t h a t  u t  ~ 0 [ i n  v i e w  of  w h i c h  t h e  l a s t  o f  t h e  c o n d i t i o n s  (3) i s  
s a t i s f i e d ] .  B e c a u s e  of  t h i s  f l o w  s y m m e t r y ,  t h e  y -  and  z - c o m p o n e n t s  of  t h e  v e c t o r  S of  t o t a l  
momentum f l u x  o f  t h e  l i q u i f i  t h r o u g h  t h e  s u r f a c e  o f  t h e  s p h e r e  e q u a l  z e r o .  T h u s ,  $ = S i .  
With allowance for the steadiness of this flow, it is easy to show that 

S/(aa2V~) = 2ar2 S [(u~ cos 0 - -  u~ sin O) u, + ( p - -  2Re-10u~/Or) r 0 + (5)  
0 

+ Be -I  (r-10u~/O0 + Ouo/Or --  r-luo) sin 0] sin 0d0. 

I n  a c c o r d a n c e  w i t h  ( 1 ) - ( 5 ) ,  S / ( z a = V ~ )  i s  a f u n c t i o n  of  ~ and  Re f o r  t h e  a s s i g n e d  d e p e n -  
d e n c e  o f  f on 0. I n  t h i s  a r t i c l e  i t  i s  a s s u m e d  t h a t  t h e  d i s t r i b u t i o n  ~f  u r o v e r  t h e  s p h e r e  
r = 1 i s  s u c h  t h a t  

s =0,,  (6) 

and that ~ is defined as a function of Re by Eq. (6) (for the assigned dependence of f on 0). 
Moreover, it is assumed that the mass flux of liquid through the surface of the sphere equals 
zero. In accordance with this, the function f(e) satisfies the condition 
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y f (0) sinOdO = O. 
0 

(7) 

The problem (1)-(4) is analyzed below for low Reynolds numbers. 

We assume that as Re § 0 

u (r, O, Re) ~ Uo (r, ~) + ~ u~ (r, O) gm (Re); (8)  

p (r, O, Re) ~ Po (r, O) Re -1 -t- ~ [m (r, O) Re-lgm (Re),; (9) 

where gm(Re) are functions satisfying the conditions 

Jim g I=0, Jim g~+1=0. 
R e d o  Re~O grn 

We note that the %-components of the vectors u n (n = 0, i, ...) equal zero. 
pansions obtained as Re + 0 and for constant r ande will be called internal. 
function e(Re) in the following asymptotic series as Re § 0: 

Asymptotic ex- 
We expand the 

B (Re) ~ 80 + ~ emgm (Re). (lO) 
n1=l  

Using (i)-(4) and (8)-(10), we define the zeroth-approximation problem: 

VPo = Auo; ( 1 1 )  

V 'Uo : -  0; ( 1 2 )  

Uor = 8o/~ Uoo = 0 at r = t ;  ( 1 3 )  

uor ~ cos 0,~ Uoo - +  - - s i n  O, Po --~ 0 as r -+  r (14) 

where Uor and Uoe are the r- and e-components, respectively, of the vector Uo. 

We assume that 

f= ~ /,.P.~ (cos O), (15) 
m=0 

where fm are constants, f~ # 0; Pm 
tion (7), we will have 

~=0. 

In Eq. (5) for S/(oa2V~) we replace Ur, u@, and p by their internal expansions. 
expression obtained as a result, we find 

s / ( ~ w l )  ~ s_iRe -I + ~ + ~R~-~(R~) + . . .  ~ R~- , .o .  

Here, in particular~ 

are Legendre polynomials. In accordance with the condi- 

( 1 6 )  

Using the 

(17) 

s - l =  2~r :  s [ ( P o - -  20Uor/Or) c~ + (r-laUor/aO + OUoo/0r --  r-luoo)sinOlsinOdO. 
0 

In view of the fact that S = O, all terms of the expansion (17) must also equal zero. 
(11)-(16) and the condition that the leading term of the expansion (17) equals zero, 
i n g  made  s i m p l e  c a l c u l a t i o n s ,  we o b t a i n  

~o= S/A; 
oo 

po = ~ )2  ~ v T ~  (2'' - ')/mr-~-*' Pm (cos 0); 

Using 
and hay- 

(18), 

(19) 
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=_ t oq~ o t O,q 
Ztor r ~sinO O0 " u ~  rsinO Or ' (20) 

where 

cosO oo cosO 

* o = - - ( r 2 + 2 r - ' )  f Pl(~>d~--'38-~TX]~[ mr2-~ + ( 2 - - m > r  -~] f P ~  d~. -1  2fl  = -1  

The region of applicability of the solution (19), (20) is determined by the condition 
of smallness of convective terms compared with viscosity terms in the equations of motion of 
the liquid. Estimating their values using(20), we can show that this condition is not satis- 
fied for Re r ~ i. Along with the internal expansions (8) and (9), therefore, We also con- 
sider certain external expansions of u and p below. The terms of these expansions match, in 
a definite way (in accordance with the principle of asymptotic joining [3]), with the terms 
of the expansions (8) and (9). We note that the conditions (14) coincide with the conditions 
for matching the leading terms of the internal expansions of Ur, ue, and p with the terms of 
order unity in their external expansions. 

We rewrite Eqs. (i) and (2) and the conditions (3) and (4) 

= + 

V-U = O; 
u,=e],~ u0 = 0  ~ r  p =  He; 

u r - + c o s O t  uo--+ - - s i n O , , p - + O  as 9"-+ oo. 

Here 7 = (~/3x, 3/39, 3/3fi); A = 3=/322 + 32/392 + 32/3~2; ~ = Re x, 9 = Re y, ~ = Re z; 
0 = Re r. We assume that as Re + 0, 

u(olRe., O, Re) z i + ~ u(m)(p, O) hm(Re); (25) 

for Ur, ue, and p as follows: 

(21) 

(22) 

(23) 

(24) 

p(p/Re., O, Re)~ ~, p(m)(p, O)hm(Re)~ (26) 

where hm(Re ) are functions satisfying the conditions 

] imha=O, lira hr~+l =0. 
tie.oO B e~0 hm 

We note that the ~-components of the vectors u(m) equal zero. Asymptotic expansions obtained 
for Re § 0 and constant p and e will be called external. Using (21), (22), and (24)-(26), we 
obtain 

Ou (1) 
^ ------ ~p(1) + ~u(l>; (27) 

Ox 

V.U (x) = O; (28) 

u~a)-..~O, u~).--~O~ p(1)---:,-O as 9 - +  oo, (29) 

where u~ I) and u0 (I) are the r-and 6-components, respectively, of the vector u (1). We note 
that the boundary conditions (23) cannot be used to obtain the conditions which the r- and e- 
components of the vectors u (m) (m = i, 2, ...) must satisfy, since the external expansions are 
carried out with constant p and 0 and Re § O, while O = Re in (23), and therefore p cannot re- 
main constant as Re § O. 

Equations (27) and (28) have solutions of the type [4] 

u~l) OqD O% = - ~ -  + -gV-- Z cos O; 

ur -: o~ p.: ~z = P "gO" + ~"  + % s in  O; 

(30) 

(31) 
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where ~(p, ~), X(P, 

Solving Eqs. (33) and (34) 

p(1) ^-z aq) . a~ 
= v -8"6- s m  0 - -  ~ c o s  0,~ 

0) are functions satisfying the equations 

F,~ ~ o; 

and using (29)-(32), we obtain 

= ~ amp-m-~Pm (cos 0); 

(32) 

(33) 

(34) 

(35) 

- ~  • ~] AmKm + 1 X = P 2e 2 (p/2) Pm(cos0), (36) 

where a m and A m are constants; Km+~/2 are MacDonald functions. 

Let the coefficient f2 in the expansion (15) differ from zero. Then the external ex- 
pansions of up -- i and Re-Zpo start with terms of order Re =. In accordance with this, we set 
h~(Re) = Re =. We replace r by 0/Re in Eq. (5) for S/(o~2V~). Using the resulting expres- 
sion and (25) and (26), we find 

S/(~a2VL) ~ ~0 + 81 ~+2 + 81~+ h~(Be) + . . .  a s  R e - + 0 .  ( 3 7 )  

Here, in particular, 

s o = 2zrp 2 [-~ u~ to + cos 20) --  -~ Uo .. . .  20 + (p<l) - -  20u~)/Op) cos 0 + 
0 

+ (p-'c)uSS)/O0 + Ou(eS)/3P - -  P-lu~I)) sin 0] sin OdO. 

Since S = 0, all terms of the expansion (37) must also equal zero. 

To find Ur (I), u(~ ), and p(1) we must determine the constants C~mandA m (m = 0, i, ...) 
i n  Eqs.  (35) and (36) f o r  ~ and X. These  c o n s t a n t s  must  s a t i s f y  t h e  c o n d i t i o n  t h a t  t h e  l e a d -  
i n g  term of the expansion (37) equal zero and the matching conditions 

ERe2IlU r = IsE, Be2Ur, ERe2Ixu8 = [l~h'p, e2Z/O~ 
/~l~e2IRe_lp = IRe_IEI~c2p,~ 

2 where IRe_~ , I~, and ERe are operators of the internal and external expansions, defined as 
given in [i]. The enumerated conditions are satisfied for 

a o = O, a s -~ 312/]1, 

Ao = 312/(2~1/2]~), A1 .-~ --312/(2~1/~/1)~ 

ah = O, Ah  --- 0 (k = 2~ 3 . . . . .  ). 

(38) 

Thus, in accordance with (30)-(32), (35), (36), and (38), Ur (I), r($ ), and p(1) have the form 

u(~ 1, 3f2 e lp(cOs0-1) { c o s 2 0 - - ]  + 2p--I(COS 20+4C0S0--  I)+I6p--2COS0} --  6--f~"~ COS0, 
= ~ /lP 

3]~ e~O(cosO-1) 2p-X)( i - -  cosO) + 4p -2] s inO--  3/~ sinO, p(1) 3/2 (3cos 20 + l). ~(~ = , - ~  I(~ + 1~p----~ = 2]lpa 

A p p l y i n g  t h e  me thod  o f  a d d i t i v e  c o m p o s i t i o n  [3 ] ,  we f i n d  a p p r o x i m a t e  c o m p o s i t e  e x p r e s -  
s i o n s  f o r  Ur,  u0 ,  and p a p p l i c a b l e  i n  t h e  e n t i r e  r e g i o n  of  f l o w :  

ur ~ ( 4  + ~ . o 2  - I l z . 0 2 )  u,  = ~0r + Re2u7 ) - 3I--L (3cos 20 + 0,. 
~/:r 2 

uo ~ (Is + E~o~-  Xl~o~)uo = ~oo + 1 ~ %  1), 

p ~ ( IRe-~  + E~~ - -  IRe-IE~e2 ) P ---- Re-lPo . 
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Let us consider the question of the asymptotic behavior of the flow velocity at large 
distances from the sphere (at low Re). In the composite expressions for u r and u~ we con- 
vert to the coordinates p and 8. For any positive number 6 not,exceeding ~ as p § ~, 6~ 
~ ~ ~ and constant Re we will have 

u r ,~" cos 0 A_ O(p-S),~ Uo ~ --s in 0 -~- O(p-a). 

The disturbance in flow velocity approaches zero considerably more slowly as the distance in- 
creases in the wake behind the body on paraboloids (~= + ~2)/i = const (~ > 0). We convert 
to the coordinates x and (~2 + ~2)/~ in the composite expressions for u r and u 0. We expand 
the resulting expressions as x + +~ and for constant (~2 + ~2)/~ and Re to within terms small 
compared with x -=. Then converting to dimensional quantities and the vector form of notation, 
we find 

3/2a 2 y2 Z2 Y2+ z~ 

T h u s ,  a t  l ow  R e y n o l d s  n u m b e r s  t h e  d i s t u r b a n c e  i n  f l o w  v e l o c i t y  i n  t h e  wake  b e h i n d  t h e  b o d y  
u n d e r  c o n s i d e r a t i o n  t e n d s  t o w a r d  z e r o  by  an  X - 2  l aw  a s  t h e  d i s t a n c e  i n c r e a s e s  [ t h e  d i s t a n c e  
f r o m  t h e  b o d y  c o i n c i d e s  w i t h  X t o  w i t h i n  a q u a n t i t y  s m a l l  c o m p a r e d  w i t h  X a s  X / a  § +~ f o r  c o n -  
s t a n t  (y2 + Z 2 ) / ( a X ) ) ] .  T h i s  r e s u l t ,  i n  p a r t i c u l a r ,  i s  i n  a g r e e m e n t  w i t h  a comment  made i n  
[5]  a b o u t  t h e  l a w  o f  v a r i a t i o n  w i t h  d i s t a n c e  o f  t h e  d i s t u r b a n c e  i n  t h e  v e l o c i t y  o f  a x i s y m m e t -  
r i c  f l o w  i n  t h e  wake  b e h i n d  a s e l f - p r o p e l l e d  b o d y .  
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